N-Methyl-4-phenylpyridine (MMP⁺) together with 6-hydroxydopamine or dopamine stimulates Ca²⁺ release from mitochondria

Balz Frei and Christoph Richter*

Eidgenössische Technische Hochschule, Laboratorium für Biochemie I, Universitätstr. 16, CH-8092 Zürich, Switzerland

Received 21 January 1986

The nigrostriatal neurotoxin N-methyl-1,2,3,6-tetrahydropyridine (MPTP) causes Parkinsonism in humans and laboratory animals. MPTP neurotoxicity is dependent on its oxidation to N-methyl-4-phenylpyridine (MPP+). The mechanism by which MPP+ causes destruction of dopamine-containing nigrostriatal cells is unknown. Here we show that MPP+ but not MPTP is taken up by energized mitochondria. MPP+ in the presence of dopamine and particularly of 6-hydroxydopamine stimulates Ca²⁺ release from mitochondria. Ca²⁺ release is accompanied by hydrolysis of intramitochondrial pyridine nucleotides. Our findings suggest that the MPTP-induced model of Parkinson's disease may be due to a disturbed Ca²⁺ homeostasis in dopamine neurons.

Parkinson's disease N-Methyl-4-phenylpyridine Mitochondria Dopamine 6-Hydroxydopamine Ca2+

1. INTRODUCTION

MPTP produces a chemically induced model of Parkinson's disease in primates by selective destruction of dopamine-containing cells in the nigrostriatal tract of the brain [1]. MPTP is metabolized by brain monoamine oxidase type B to N-methyl-4-phenyl-2,3-dihydropyridine which is further oxidized to MPP⁺ [2-4]. MPP⁺ is then selectively taken up into dopamine neurons [5,6].

This paper is dedicated to Professor C. Martius on the occasion of his 80th birthday

* To whom correspondence should be addressed

Abbreviations: arsenazo III, 2,2'-(1,8-dihydroxy-3,6-disulphonaphthalene-2,7-bis azo)bis(benzenearsonic acid); CCCP, carbonyl cyanide m-chlorophenylhydrazone; $\Delta\psi$, mitochondrial transmembrane electrical potential, negative inside; MPP⁺, N-methyl-4-phenylpyridine; MPTP, N-methyl-1,2,3,6-tetrahydropyridine; 6-OHDA, 6-hydroxydopamine

Once inside the neuron the mechanism by which MPP⁺ exerts its neurotoxicity is not known. It has been speculated that the culprit is a cocktail of oxidation products derived from dopamine and MPTP. Since oxidative stress induces release of Ca²⁺ from mitochondria [7–10], and since disturbance of cellular Ca²⁺ homeostasis upon release of mitochondrial Ca²⁺ can cause cell death [11,12], we investigated the ability of mitochondria to retain Ca²⁺ in the presence of MPTP, MPP⁺, 6-OHDA and dopamine.

2. MATERIALS AND METHODS

2.1. Materials

MPP⁺ and MPTP were obtained from Research Biochemicals (Wayland); N-[methyl-³H]MPP⁺, N-[methyl-³H]MPTP and ⁴⁵CaCl₂ from New England Nuclear; [carboxyl-¹⁴C]nicotinic acid from The Radiochemical Centre, Amersham; arsenazo III, dopamine and 6-OHDA from Fluka, Buchs.

2.2. Isolation of liver mitochondria

Liver mitochondria of female Wistar rats fasted overnight were isolated as in [13]. Mitochondria were washed twice in 210 mM mannitol, 70 mM sucrose, 5 mM Hepes, pH 7.4 (MSH buffer).

2.3. Standard incubation procedure

Mitochondria (2 mg protein/ml) were incubated at 25°C in 3 ml MSH buffer under constant stirring and oxygenation. Reduction of mitochondrial pyridine nucleotides and release of endogenous Ca²⁺ were induced by addition of 5 μM rotenone. Thereafter, when appropriate, Ca²⁺ was added or, to prevent possible reuptake of Ca²⁺, EGTA was added. Mitochondria were then energized with 2.5 mM K⁺-succinate. When appropriate, Ca²⁺ uptake was allowed to proceed for 2 min. The final Ca²⁺ loads given in section 3 are the sum of the endogenous and added Ca²⁺. Finally, 0.5 mM MPP⁺, MPTP, or 6-OHDA were added (time zero).

2.4. Determination of intramitochondrial radioactivity

Mitochondria were incubated in the presence of the appropriate radioactive compound ([3 H]-MPP+, [3 H]MPTP, 45 Ca $^{2+}$, or 14 C-labeled intramitochondrial pyridine nucleotides). At the times indicated 150- μ l aliquots were withdrawn, filtered through Millipore filters (0.45 μ m pore size), and rinsed twice with 150 μ l cold MSH buffer. The radioactivity remaining on the filters was determined in a liquid scintillation counter.

2.5. Spectrophotometric determination of Ca²⁺ uptake and release by mitochondria

Measurements were made in the presence of $50 \mu M$ arsenazo III at 685-675 nm.

3. RESULTS AND DISCUSSION

Energized mitochondria take up MPP⁺ but not MPTP (fig.1). With both $100 \,\mu\text{M}$ (not shown) and $500 \,\mu\text{M}$ MPP⁺ (fig.1a), 24%, i.e. 12 or $60 \,\text{nmol/mg}$ protein, of the offered MPP⁺ is taken up. The uptake of MPP⁺ is prevented by the uncoupler CCCP; likewise, accumulated MPP⁺ is released instantaneously upon addition of CCCP (fig.1a). It is well known that Ca²⁺ is taken up by mitochondria electrophoretically and thereby

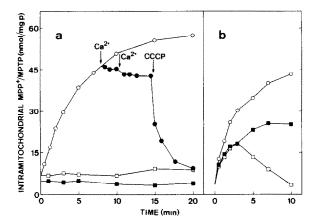


Fig.1. Uptake of MPP⁺ and MPTP by mitochondria. Mitochondria were incubated under standard conditions, and (b only) depleted of Ca²⁺ or loaded with 58 nmol Ca²⁺/mg protein. At zero time, 0.5 mM N-[methyl-³H]MPP⁺ (spec. act. 470 dpm/nmol) or N-[methyl-³H]MPTP (485 dpm/nmol) was added. Uptake of radioactivity was determined by Millipore filtration. (a) [³H]MPP⁺ (O); [³H]MPTP (II); [³H]MPP⁺ and, at the arrows, Ca²⁺ (8 nmol/mg protein) or 2.0 μM CCCP (II); (B); [3H]MPP⁺ added to Ca²⁺-depleted mitochondria (O); [3H]MPP⁺ added to Ca²⁺-loaded mitochondria (II); [3H]MPP⁺ together with 0.5 mM 6-OHDA added to Ca²⁺-loaded mitochondria (II).

lowers the mitochondrial transmembrane potential, negative inside $(\Delta\psi)$. When Ca^{2+} is added to energized mitochondria before MPP⁺ uptake is completed, further accumulation of MPP⁺ is prevented (fig.1a). Fig.1b shows that Ca^{2+} -depleted mitochondria take up more MPP⁺ than Ca^{2+} -loaded mitochondria. When MPP⁺ is added together with 6-OHDA to Ca^{2+} -loaded mitochondria the initial rate of MPP⁺ uptake is the same as in the absence of 6-OHDA. However, MPP⁺ uptake is now soon followed by MPP⁺ release due to increased Ca^{2+} cycling (see below). The above observations indicate that MPP⁺ equilibrates in response to $\Delta\psi$ between the intra- and extramitochondrial compartment.

When MPP⁺ or 6-OHDA is added to Ca²⁺-loaded mitochondria in the absence of EGTA, i.e. when in principle Ca²⁺ reuptake can take place after Ca²⁺ release ('Ca²⁺ cycling'), a pronounced net Ca²⁺ release is observed only after about 15 min (fig.2a). In contrast, when MPP⁺ and 6-OHDA are added jointly a rapid and virtual-

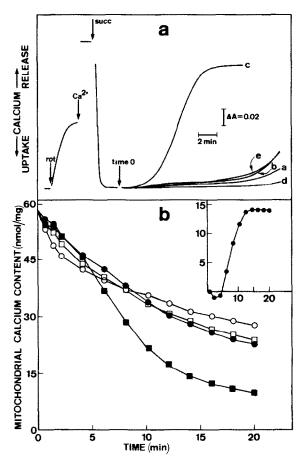


Fig.2. Release of Ca2+ from mitochondria in the presence of MPP+, MPTP and 6-OHDA. Mitochondria were incubated under standard conditions and loaded with 58 nmol Ca²⁺/mg protein. Ca²⁺ movements were followed either (a) spectrophotometrically or (b) by 45Ca2+ Millipore filtration and (spec. 1100 dpm/nmol). At zero time the following additions (0.5 mM) were made: (a) MPP+ (curve a); 6-OHDA (curve b); MPP+ together with 6-OHDA (curve c); MPTP together with 6-OHDA (curve d); MPP+ and MPTP together with 6-OHDA (curve e). (b) EGTA (0); EGTA and MPP⁺ (○); EGTA and 6-OHDA (•); EGTA together with MPP+ and 6-OHDA (1). (Inset) Difference between curves () and ().

ly complete Ca^{2+} release ensues almost instantaneously (fig.2a). This rapid release is paralleled by increased Ca^{2+} cycling and consequently a fall of $\Delta\psi$ as measured by the safranine technique [14] (not shown). MPTP inhibits the 6-OHDA-stimulated Ca^{2+} release and diminishes the effectiveness of MPP⁺ and 6-OHDA in stimulating Ca^{2+} release (fig.2a). Also dopamine, albeit less ef-

fectively than 6-OHDA, stimulates Ca²⁺ release from mitochondria in the absence of EGTA the onset of which is much earlier in the presence of MPP⁺ (not shown). When Ca²⁺ release is measured under non-cycling conditions due to the presence of EGTA (fig.2b) stimulated release is observed only when MPP⁺ and 6-OHDA are offered together to mitochondria. The stimulation is transient under these conditions (cf. inset to fig.2b).

 Ca^{2+} release can be the result of a collapsed $\Delta\psi$ due to mitochondrial damage. MPP⁺ added to Ca^{2+} -depleted mitochondria energized by K⁺-succinate does not alter $\Delta\psi$ (not shown). Ca^{2+} release as a result of damage caused by MPP⁺ is therefore ruled out.

The oxidation and subsequent hydrolysis of mitochondrial pyridine nucleotides have been implicated to be important in the Ca²⁺-release mechanism of mitochondria [8–10]. MPP⁺ might be reduced in mitochondria, and 6-OHDA can auto-oxidize [15] and form H₂O₂ which is reduced in mitochondria enzymatically by NAD(P)H [8–10]. We therefore investigated MPP⁺- and 6-OHDA-induced pyridine nucleotide hydrolysis

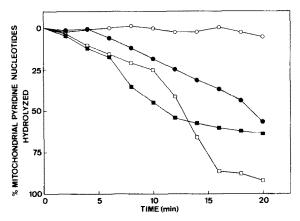


Fig. 3. Hydrolysis of mitochondrial pyridine nucleotides induced by MPP⁺ and 6-OHDA. Intramitochondrial pyridine nucleotides were labeled in vivo at the nicotinamide moiety [9]. Mitochondria were incubated under standard conditions and loaded with 58 nmol Ca²⁺/mg protein. At zero time the following additions (0.5 mM) were made: MPP⁺ (○); 6-OHDA (●); MPP⁺ and 6-OHDA (□); MPP⁺ together with 6-OHDA and EGTA (■). Release of intramitochondrial radioactivity, indicating pyridine nucleotide hydrolysis [9], was followed by Millipore filtration.

in mitochondria (fig.3). MPP⁺ alone does not cause pyridine nucleotide hydrolysis in Ca²⁺-loaded mitochondria. About 50% of pyridine nucleotides are hydrolyzed within 20 min in the presence of 6-OHDA whereas in the presence of both MPP⁺ and 6-OHDA hydrolysis is almost complete at this time. In the presence of EGTA pyridine nucleotide hydrolysis induced by MPP⁺ together with 6-OHDA in Ca²⁺-loaded mitochondria is less extensive and follows a similar time course to Ca²⁺ release under identical conditions (cf. fig.2b). It is therefore likely that the MPP⁺-and 6-OHDA-stimulated Ca²⁺ release takes place by a mechanism linked to pyridine nucleotide oxidation and hydrolysis [8-10].

The present results demonstrate that MPP⁺ in combination with 6-OHDA or dopamine, but not alone, greatly decreases the ability of mitochondria to retain Ca²⁺. Whether this is due to the stimulation of a specific Ca²⁺-release mechanism or to unspecific damage of mitochondria remains unknown. Disturbance of cellular Ca²⁺ homeostasis upon release of Ca²⁺ from mitochondria can cause cell death [11,12]. Our findings provide experimental support for the hypothesis that a cocktail of oxidation products of both dopamine and MPTP are important for the development of the MPTP-induced model of Parkinson's disease and suggest that destruction of nigrostriatal cells may be due to disturbed Ca²⁺ homeostasis.

ACKNOWLEDGEMENTS

This work was supported by the Schweizerischer Nationalfonds, grant no.3.503.-083. We thank Peter Lohse and Christoph Schickli for help in some experiments.

REFERENCES

- Burns, R.S., Chiueh, C.C., Markey, S.P., Ebert, M.H., Jacobowitz, D.M. and Kopin, I.J. (1983) Proc. Natl. Acad. Sci. USA 80, 4546-4550.
- [2] Markey, S.P., Johanessen, J.N., Chiueh, C.C., Burns, R.S. and Herkenham, M.A. (1984) Nature 311, 464-467.
- [3] Langston, J.W., Irwin, I., Langston, E.B. and Forno, L.S. (1984) Neurosci. Lett. 48, 87-92.
- [4] Chiba, K., Trevor, A.J. and Castagnoli, N. jr (1984) Biochem. Biophys. Res. Commun. 120, 574-578.
- [5] Javitch, J.A., D'Amato, R.J., Strittmatter, S.M. and Snyder, S.H. (1985) Proc. Natl. Acad. Sci. USA 82, 2173-2177.
- [6] Chiba, K., Trevor, A.J. and Castagnoli, N. jr (1985) Biochem. Biophys. Res. Commun. 128, 1228–1232.
- [7] Lehninger, A.L., Vercesi, A. and Bababunmi, E.A. (1978) Proc. Natl. Acad. Sci. USA 75, 1690-1694.
- [8] Lötscher, H.R., Winterhalter, K.H., Carafoli, E. and Richter, C. (1979) Proc. Natl. Acad. Sci. USA 76, 4340-4344.
- [9] Lötscher, H.R., Winterhalter, K.H., Carafoli, E. and Richter, C. (1980) J. Biol. Chem. 255, 9325-9330.
- [10] Frei, B., Winterhalter, K.H. and Richter, C. (1985) Eur. J. Biochem. 149, 633-639.
- [11] Jewell, S.A., Bellomo, G., Thor, H., Orrenius, S. and Smith, M.T. (1982) Science 217, 1257-1259.
- [12] Bellomo, G., Jewell, S.A., Thor, H. and Orrenius, S. (1982) Proc. Natl. Acad. Sci. USA 79, 6842-6846.
- [13] Klingenberg, M. and Slenczka, W. (1959) Biochem. Z. 331, 486-517.
- [14] Colonna, R., Massari, S. and Azzone, G.F. (1973) Eur. J. Biochem. 34, 577-585.
- [15] Sachs, C. and Jonsson, G. (1975) Biochem. Pharmacol. 24, 1-8.